Structural basis of nonribosomal peptide macrocyclization in fungi
نویسندگان
چکیده
منابع مشابه
Structural basis of ribosomal peptide macrocyclization in plants
Constrained, cyclic peptides encoded by plant genes represent a new generation of drug leads. Evolution has repeatedly recruited the Cys-protease asparaginyl endopeptidase (AEP) to perform their head-to-tail ligation. These macrocyclization reactions use the substrates amino terminus instead of water to deacylate, so a peptide bond is formed. How solvent-exposed plant AEPs macrocyclize is poorl...
متن کاملStructural basis for precursor protein-directed ribosomal peptide macrocyclization
Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a uniq...
متن کاملNonribosomal peptide synthesis in Aspergillus fumigatus and other fungi.
In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...
متن کاملReview Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi
In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...
متن کاملStructural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog.
Cyclodipeptides are secondary metabolites biosynthesized by many bacteria and exhibit a wide array of biological activities. Recently, a new class of small proteins, named cyclodipeptide synthases (CDPS), which are unrelated to the typical nonribosomal peptide synthetases, was shown to generate several cyclodipeptides, using aminoacyl-tRNAs as substrates. The Mycobacterium tuberculosis CDPS, Rv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Chemical Biology
سال: 2016
ISSN: 1552-4450,1552-4469
DOI: 10.1038/nchembio.2202